1) CODE:旨在开发基础性的算法和软件,使得现有无人机能够以最小代价,在最小监督下协同工作,使得当前多人操作1架无人机的模式到1人同时操作6架或更多的无人机,以提高美军在拒止或对抗空域中分布式行动能力。项目按照计划分3阶段执行。
2018年11月,项目演示了装备CODE软件的无人机系统在“反介入区域拒止”环境下适应和响应意外威胁的能力。在真实/虚拟/构造环境下中,6架真实无人机和 24架 虚拟无人机,接收指挥官的任务目标后,自主协同导航、搜索、定位;并在通信和GPS拒止环境中,与模拟综合防空系统保护下的计划和突发的目标作战。CODE的可扩展能力极大增强了现有空中平台的生存性、灵活性和有效性,并减少无人系统的开发时间和成本。
2) SoSITE:开展分布式航空作战体系架构研究,发展能够快速集成任务系统/模块到体系的技术,并验证体系在战场中的有效性和鲁棒性。目标是使用简单的、廉价的无人机等平台组成集群,在开放性系统架构下,进行多作战平台和信息传输整合,最终优化作战形成分布式战力的方法。例如连接有人和无人机或者空中和地面载具、或者多种基础设施组件。
项目计划分2阶段进行,2018年7月,洛•马公司臭鼬工厂和DARPA开展了系列SoSITE项目飞行试验,验证了如何应用SoS方法和手段在对抗环境中对包括空、天、地、海、网络空间的各个作战域内的系统进行快速无缝的集成。该项目的成果可将任务系统快速并经济上可承受地集成到现有架构中,有助美军在瞬息万变的作战环境中维持作战优势。

(CODE项目计划图)

( SoSITE项目计划图)
3) DBM:SoSITE项目明确提出了发展分布式空战的概念、架构及技术集成工具,这必然带来组合爆炸的难题。针对这一挑战,DBM项目借助开发和验证分布式决策辅助软件,提供分布式的规划、控制以及态势理解等解决方案,以指导空战管理和空对地攻击等任务。在完成第1阶段论证和关键算法设计后,2017年9月,DARPA和AFRL进行了首轮飞行试验,验证了通信中断后多机系统可继续执行任务能力;2018年3月,BAE公司赢得了最终阶段合同,于2019年9月进行最后的飞行演示验证。
2.3 加强基础研究,突破核心关键技术
集合人工智能、控制理论、机器人、系统工程和生物学等领域专家,从自然集群的自组织机理着手,突破分布式集群体系架构、集群持久协同、协同感知-判断-决策-行动(OODA)、群体智能等核心技术,并将其应用到集群系统中。关键技术的研发大多由高校和具有强大科研实力的科技公司主导完成,其中决策与控制相关的技术进展参见第3节。这里主要介绍部分有较大影响的牵引性项目。
美国麻省理工学院How教授领导的小组自2006年起开展“无人机集群健康管理”(UAV Swarm Health Management)项目。“大规模分布式飞行器集群,在长时间任务中是有很大潜力以提供性能优势的。然而,如果没有一个高度集成的健康管理系统,这些性能优势是很难发挥出来的”。基于此,项目设计了无人机集群和地面车辆健康状态的任务规划算法,例如确定平台失效对任务的影响、使用真实硬件设备来验证加油和维护调度的最优策略等。10架四旋翼无人机系统的300余次测试验证了算法的有效性。
美国宾夕法尼亚大学GRASP(通用机器人自动控制、传感器和感知)实验室认为:未来将依赖于小型平台和传感器组成的大型网络在动态、资源有限的敌对环境中执行任务。为此,他们围绕集群协同:OODA回路展开研究,包括体系架构、分布感知、协同同步定位建图、编队飞行等。特别值得提及的是:2012年他们成功让16~20架小型四旋翼无人机(73 g)在室内组成各种形状的飞行编队,这是研究人员第1次实现了10架以上无人机的集群飞行,取得了轰动性的演示效应。

( 16架无人机形成三维螺旋和金字塔)
在GRASP实验室旋翼机编队飞行的激励下,中美两国的科技公司在无人机集群数量上不断突破,使得无人机集群灯光秀逐步成为各大型活动的“标配”。2015年11月,英特尔公司在德国汉堡实现了100架四旋翼的室外灯光秀表演,从此拉开了无人机集群灯光秀的序幕;2018年英特尔公司在其成立50周年的庆典上放飞2018架无人机,曾创造了当时一次性使用无人机数量最多的世界纪录。
国内亿航、高巨创新、江西翼眸科技等公司,也多次完成无人机集群灯光秀表演。
2019年7月,翼眸科技公司在建国70周年之际,完成了2100架无人机集群的灯光秀表演。一般认为,灯光秀表演中的每一架无人机都已预先设定好轨迹,以轨迹跟踪或集中控制的方式完成。

(翼眸科技庆祝建国70周年的灯光秀表演)
集群协同算法的开发和验证在地面机器人集群上开展得更为深入。考虑到规模因素,地面机器人集群往往严格控制单机器人的体积和成本。瑞士洛桑联邦理工学院开发了用于教学的e-puck机器人,每个机器人的直径仅有7.5cm,造价约250欧元;在此基础上,实现了20个e-puck机器人的聚集、觅食等协同行为。德国斯图加特大学设计了尺寸为30×30×20mm的Jasmine机器人,并在3×3m的区域内实现了规模达到105个机器人的聚集行为。美国哈佛大学Radhika Nagpal教授团队设计的Kilobot机器人,直径为3.3cm,单个造价仅为14美元,机器人只能通过振动的方式以1cm/s的速度运动;基于Kilobot机器人,该团队设计了觅食、编队等协同行为,并进行了上千规模(1024)的集群演示,集群系统在运行12h之后,能够自动排成“K”字形、五角星、扳手等图案。这也是机器人集群的规模首次达到千量级。
(Kilobot机器人及其形成的扳手图案)
群体智能也被普遍视为集群系统能力提升的关键技术,受到了多个领域研究者的普遍关注。群体智能往往被看作是对自然界的生物智能的模拟,通过设计简单规则使能力较弱的一群个体最终进化生成较复杂的群体行为。大量的代表性成果发表在Nature和Science及其子刊上。除Kilobot机器人外,近年来取得的代表性成果还有:哈佛大学的Werfel等受白蚁启发,设计了3个机器人,基于简单规则和局部感知最终可搭建金字塔等形状;比利时布鲁塞尔自由大学的两位研究人员使用e-puck构建的20个机器人集群经过群体演化后,能够自行学会并掌握先前设计者并为对其指明的动作序列。2019年,中国青年学者李曙光与他的合作者共同完成设计的粒子机器人登上Nature封面,该机器人通过信息交换和力学协同模拟了生物细胞的运动,能够实现搬运物体和向光源移动。
2.4 加紧集群验证,形成非对称优势
为推动无人机集群形成任务能力,在协同模式和关键技术的牵引下,国内外研究机构开展了大量的集群协同飞行试验验证,力争尽快形成非对称集群优势。美正在开展的代表性项目包括:低成本无人机集群技术、“山鹑”无人机集群、近战隐蔽自主一次性无人机、可空中回收无人机集群“小精灵”等。项目基本情况如表1所示。
低成本无人机集群技术(LOw-Cost Unmanned aerial vehicle Swarming Technology,LOCUST)项目由美国海军研究办公室(Office of Naval Research, ONR)主导,采用无人机集群协同模式。旨在快速释放大量小型无人机,通过自适应组网及自主协同,以压倒性数量优势赢得战争。项目发展了如郊狼(Coyote)等系列小型折叠翼无人机和多管发射装置。2016年4月,美海军实现了30架郊狼无人机的快速发射(1架/s)和自主编队飞行的技术验证。表1 典型无人机集群项目Table 1 Typical programs of UAV swarms


(LOCUST项目的郊狼无人机及编队飞行)
山鹑(Perdix)无人机集群项目由美国战略能力办公室(Strategic Capabilities Office, SCO)主导,采用有人战机投放无人机集群代替空射诱饵等,执行诱导欺骗、前出侦查等任务。2016年10月,完成由3架F/A-18战斗机空中投放103架“山鹑”无人机的演示验证,集群展现了一些高级的行为如集群决策、自适应编队以及集群自愈性。

(山鹑”(Perdix)无人机集群演示)
近战隐蔽自主一次性无人机(Close-In Covert Autonomous Disposable Aircraft, CICADA)项目由美国海军研究实验室(Naval Research Laboratory,NRL)发起。项目旨在开发低成本一次性微型无人机,每架只携带微型电子传感器,比如天气、温度、湿度和气压传感器等,借助大型载体像播种一样向某个区域大量“播种”,形成庞大而稳定的“探测矩阵”。2017年4月,美海军从P-3侦察机上一次性释放32架CICADA微型无人机;在2019年4月,4架大型无人机(Hives)释放了100多架小型CICADA微型无人机编队,用于收集区域的气象资料。

(CICADA无人机集群演示)
可空中回收无人机集群“小精灵”(Gremlins)项目由DARPA主导。项目设想让现有大型飞机充当“空中航母”,在敌防御射程外发射成群小型无人机;当任务结束后C-130运输机将小型无人机回收,在24 h内完成重置并等待下次使用。项目于2015年9月启动,目前正处于第3阶段,计划2020年春完成全流程试验,具备在C-130上一个操作员最多控制8架无人机以及在半小时内空中回收4架无人机的能力。
美国之外,各区域强国也积极开展各类集群试验。欧盟在未来空战系统中,将空射无人机集群作为未来实施防区外精确战术打击和集群式饱和攻击的核心手段。印度也于2019年发布了首个无人机集群概念项目ALFA-S(Air-Launched Flexible Asset-Swarm),计划通过战斗机发射大量察打一体无人机,执行对地防空打击任务。土耳其国营STM军工集团展示了20架7 kg的四旋翼无人机集群作战反恐的概念演示。